
## A 4100 D

Integrierte AM/FM-Kombischaltung vorwiegend für den Einsatz in Koffergeräten geeignet. Sie besitzt für AM- und FM-Betrieb getrennte Signalwege und somit getrennte HF-Eingänge und getrennte NF-Ausgänge. Für jede Betriebsart ist ein getrennter Betriebsspannungsanschluß vorgesehen, die Feldstärkeindikatorausgänge für AM und FM arbeiten auf einem Schaltkreisanschluß. Weiterhin zeichnet sich der A 4100 D durch ein besonders günstiges Signal-Rauschverhältnis des AM- und FM-Teils und durch eine geringe Außenbeschaltung aus.

## Bauform 10

## Blockschaltung



| Grenzwerte                                                                |                          | min. | typ. | max.         |     |
|---------------------------------------------------------------------------|--------------------------|------|------|--------------|-----|
| D                                                                         | Ucc                      |      | -    | 100 Sec. 100 | V   |
| Betriebsspannung AM-Teil<br>Betriebsspannung FM-Teil                      | UCC                      | -    |      | 16,5         | ٧   |
| Kenndaten (bei $U_{\mbox{CC}}=10\mbox{ V}$ ,                              | ϑ <sub>α</sub> = 25 °C   | C)   |      |              |     |
| AM-Teil                                                                   |                          |      |      |              |     |
| - Stromaufnahme $U_{ m I}=0$ ; R $=50~\Omega$                             | lcc                      | -    | 14   | 20           | mA  |
| - NF-Ausgangsspannung $U_1 = 20 \mu V$ ; $m = 30 \%$                      | $U_{NF}$                 | 30   | 55   | -            | mV  |
| $U_1 = 10 \text{ mV}; \text{ m} = 30 \%$                                  |                          |      | 71   | 130          | mV  |
| - Klirrfaktor<br>$m = 80 \%$ ; $U_{\parallel} = 10 \text{ mV}$            | k n                      | -    | 2,5  | 4,5          | 0/0 |
| - Signal-Rauschabstand m = $30  {}^0\!/_{\!0}$ ; U $_{\!1}$ = $20  \mu V$ | S+N<br>N                 | 20   | 25,5 | -            | dB  |
| FM-Teil                                                                   |                          |      |      |              |     |
| - Stromaufnahme $U_{\parallel}=0$ ; $R=50~\Omega$                         | Icc                      | -    | 8,5  | 14           | mA  |
| - NF-Ausgangsspannung $U_{I} = 10 \text{ mV}; \Delta f = 75 \text{ kHz}$  | UNF                      | 300  | 470  | -            | mA  |
| - AM-Unterdrückung m = 30 $\%$ 0; U <sub>1</sub> = 10 mV                  | MA                       | 55   | 63   | -            | dB  |
| - Klirrfaktor $U_1 = 10 \text{ mV}; \Delta f = 75 \text{ kHz}$            | L.                       |      | 0,8  | 2            | 9/0 |
| ο <sub>1</sub> = 10 m·ν <sub>1</sub> Δ1 = 73 κ112                         | k <sub>n</sub>           |      | 0,0  |              | 70  |
|                                                                           |                          |      |      |              |     |
| Betriebsbedingungen                                                       |                          | 4.5  |      | 47           | W   |
| Betriebsspannung<br>AM- und FM-Teil                                       | Ucc                      | 4,5  | -    | 15           | V   |
| Oszillatorfrequenz                                                        | fosz                     | 0,5  | -    | 30           | MHz |
| Eingangsfrequenz<br>AM-ZF-Teil                                            | <sup>f</sup> ZF AM       | 0,2  | ~    | 0,7          | MHz |
| Eingangsfrequenz<br>FM-ZF-Teil                                            | <sup>f</sup> ZF FM       | 0    | -    | 15           | MHz |
| Betriebstemperaturbereich                                                 | $\vartheta_{\mathbf{a}}$ | -10  |      | +70          | •C  |